

 [image: Documentation Status]
 [https://thejas32-programmers-manual.readthedocs.io/en/latest/?badge=latest]
THEJAS32 Programmers Manual

This Programmer’s Manual provides an overview of the RISC-V THEJAS32 SoC, covering the architecture overview, instruction set, memory organization, registers, exceptions, interrupts, programming model and development tools.

	THEJAS32 SoC Programmer’s Manual
	Introduction

	Architecture Overview
	Features

	Instruction Set Architecture

	Memory Organization
	Memory Map

	Registers

	System Control and Status Registers (CSRs)

	Exceptions and Interrupts

	Programming Model
	Hello World Program

	Development Tools

	Conclusion

THEJAS32 SoC Programmer’s Manual

Introduction

The THEJAS32 SoC (System-on-Chip) is a flexible and customizable platform designed for embedded systems. This programmer’s manual aims to provide an overview of the architecture, instruction set, memory organization, programming model, and development tools for programming applications on an THEJAS32 SoC.

Architecture Overview

The The THEJAS32 SoC is based on RISC-V RV32IM architecture of the RISC-V Instruction Set Architecture (ISA). It stands for RV32 (32-bit address space) and IM (integer multiplication and division). The architecture supports a set of instructions, including basic integer arithmetic, logical operations, load/store instructions, control flow instructions, and privileged instructions for system-level operations.

An THEJAS32 SoC typically consists of a ET1031 Processor core, memory subsystem, input/output interfaces, and various peripherals tailored for specific applications.

Features

The THEJAS32 SoC provides the following features:

	32-bit instruction and data formats

	32 general-purpose registers (x0-x31)

	Machine Mode

	Interrupt and exception handling

	System control and status registers (CSRs)

	Integer multiplication and division operations

Instruction Set Architecture

The RV32IM architecture is a 32-bit RISC-V instruction set architecture that supports integer and multiplication/division operations. The architecture is divided into the following major components:

	Integer base instructions (RV32I)

	Integer multiplication and division extension (RV32M)

The THEJAS32 SoC supports a wide range of instructions, including but not limited to:

	Arithmetic and logical instructions (add, sub, and, or, xor, etc.)

	Load and store instructions (lw, sw, lb, sb, etc.)

	Branch and jump instructions (beq, bne, jal, jalr, etc.)

	Shift and comparison instructions (sll, srl, slt, etc.)

	Multiplication and division instructions (mul, div, etc.)

Refer to the RISC-V specification for a complete list of instructions supported by the RV32IM architecture.

Memory Organization

The memory organization in an THEJAS32 SoC typically consists of several memory regions, including instruction memory (often referred to as “text” segment), data memory (often referred to as “data” segment), stack memory, and peripheral memory regions.

The instruction memory stores executable code, and the data memory stores variables and data used by the program. The stack memory is used to store function call frames and local variables. The peripheral memory regions are used to interface with external devices and peripherals connected to the SoC.

The memory organization can vary depending on the specific THEJAS32 SoC implementation and the chosen memory map.

Memory Map

The THEJAS32 SoC’s memory map is as follows:

ROM

	Memory Address

	Content

	Size

	10000

	Boot firmware

	32KB

	17FFF

	End of Memory

	

IRAM

	Memory Address

	Content

	Size

	20000

	User defined firmware

	96KB

	37000

	Data segment for firmware

	32KB

	3FFFF

	End of Memory

	

Flash

	Memory Address

	Content

	Size

	000000

	Reserved for Program Flashing

	256KB

	040000

	User defined memory

	1.75MB

	200000

	End of Memory

	

Registers

The RV32IM architecture defines a set of 32 general-purpose registers (x0 to x31), which are 32 bits wide. These registers are used to store data and perform computations within the CPU core.

	Name

	Width

	Number

	Description

	x0

	32

	0

	Hard-wired zero

	x1

	32

	1

	Return address

	x2

	32

	2

	Stack pointer

	x3

	32

	3

	Global pointer

	x4

	32

	4

	Thread pointer

	x5

	32

	5

	Temporaries (1)

	x6

	32

	6

	Temporaries (2)

	x7

	32

	7

	Temporaries (3)

	x8

	32

	8

	Temporaries (4)

	x9

	32

	9

	Temporaries (5)

	x10

	32

	10

	Temporaries (6)

	x11

	32

	11

	Temporaries (7)

	x12

	32

	12

	Reserved for platform use

	x13

	32

	13

	Reserved for platform use

	x14

	32

	14

	Reserved for platform use

	x15

	32

	15

	Reserved for platform use

	x16

	32

	16

	Reserved for platform use

	x17

	32

	17

	Reserved for platform use

	x18

	32

	18

	Reserved for platform use

	x19

	32

	19

	Reserved for platform use

	x20

	32

	20

	Reserved for platform use

	x21

	32

	21

	Reserved for platform use

	x22

	32

	22

	Reserved for platform use

	x23

	32

	23

	Reserved for platform use

	x24

	32

	24

	Reserved for platform use

	x25

	32

	25

	Reserved for platform use

	x26

	32

	26

	Reserved for platform use

	x27

	32

	27

	Reserved for platform use

	x28

	32

	28

	Reserved for platform use

	x29

	32

	29

	Reserved for platform use

	x30

	32

	30

	Reserved for platform use

	x31

	32

	31

	Reserved for platform use

Additionally, there are special-purpose registers, including the program counter (PC), stack pointer (SP), and various control and status registers (CSRs) used for managing exceptions, interrupts, and other system-level operations.

The THEJAS32 SoC may also include additional registers for specific purposes, such as peripheral control and configuration.

System Control and Status Registers (CSRs)

The THEJAS32 SoC includes a set of control and status registers (CSRs) that allow software to control and monitor the processor’s behavior. The CSRs provide access to various system configuration, status, and control registers, including:

	Machine status registers (mstatus, misa, etc.)

	Machine trap handling registers (mtvec, mcause, mie, etc.)

	Machine memory management registers (satp, etc.)

Refer to the RISC-V specification for a complete list of CSRs supported by the RV32IM architecture.

Exceptions and Interrupts

The RV32IM architecture supports exceptions and interrupts, which are used to handle exceptional events and asynchronous events, respectively. Exceptions can occur due to events like illegal instructions, divide-by-zero, and page faults, while interrupts are typically generated by external devices or timers.

When an exception or interrupt occurs, the CPU core saves the current context, including the program counter and registers, and transfers control to the exception or interrupt handler. After handling the exception or interrupt, the core resumes execution from the saved context.

Programming Model

The programming model for an RV32IM-based SoC follows the general principles of RISC-V programming. Programs are typically written in assembly language or compiled from high-level languages using a RISC-V toolchain.

To develop software for an THEJAS32 SoC, you need to understand the instruction set architecture, memory organization, and register usage. You also need to be familiar with the available development tools, such as assemblers, compilers, linkers, and debuggers, to build and debug your applications.

The specific programming model details, including calling conventions, stack usage, and system-level operations, may vary depending on the RV32IM implementation and the chosen software development environment.

Hello World Program

To create a “Hello, World!” C program to display text in a UART terminal on THEJAS32 SoC, you’ll need a few components: the C code, the linker script (lds), the C runtime startup code (crt.S), and a Makefile to build the project. Below are the steps to achieve this:

1.Write the “Hello, World!” C program (main.c):

/*Function to print the string using UART Peripheral*/
void print_string(const char *str)
{
 // Address of UART TX register
 volatile char *tx = (volatile char *)0x10000100;
 // Address of UART LSR register
 volatile char *lsr = (volatile char *)0x10000114;
 while (*str)
 {
 *tx = *str; //Tranxmit a single char
 while ((*lsr& 0x20) != 0x20); //Check LSR for TX complete
 str++;
 }
}

/*Main program*/
void main() {
 const char *message = " Hello, World!\n";

 print_string(message);

 while(1);/*Infinite Loop*/
}

	Write the linker script (linker.lds):

OUTPUT_ARCH(riscv)
ENTRY(_start)

MEMORY
{
 ram (rwx) : ORIGIN = 0x200000, LENGTH = 250K
}

SECTIONS
{
 . = 0x200000; /*Start Address*/
 .text.init : { *(.text.init) } /*Init code*/
 .text : { *(.text) } /*Main Program*/
 .data : { *(.data) } /*Data Section*/
 _end=.; /*End of section*/
}

	Write the C runtime startup code (crt.S):

 .section ".text.init"
 .globl _start

 #init all registers with zero
_start:
 li x1, 0
 li x2, 0
 li x3, 0
 li x4, 0
 li x5, 0
 li x6, 0
 li x7, 0
 li x8, 0
 li x9, 0
 li x10,0
 li x11,0
 li x12,0
 li x13,0
 li x14,0
 li x15,0
 li x16,0
 li x17,0
 li x18,0
 li x19,0
 li x20,0
 li x21,0
 li x22,0
 li x23,0
 li x24,0
 li x25,0
 li x26,0
 li x27,0
 li x28,0
 li x29,0
 li x30,0
 li x31,0

#set the stack pointer as the end+1K
 la tp, _end
 add tp, tp, 1024
 add sp, sp, tp

#jump to main
 j main

	Write the Makefile (Makefile):

CC=riscv64-vega-elf-gcc
OC=riscv64-vega-elf-objcopy

CFLAGS=-march=rv32im -mabi=ilp32 -Os -nostdlib -nostartfiles

all: hello.elf

hello.elf: main.c crt.S linker.lds
 $(CC) $(CFLAGS) -T linker.lds -o hello.elf crt.S main.c
 ${OC} hello.elf hello.bin -O binary
clean:
 rm -f hello.elf hello.bin

	Install any riscv toolchain that supports ‘rv32im’ extension, here we are using vega-tools(Prebuilt toolchain available in VEGA Gitlab repository)

$ git clone https://gitlab.com/cdac-vega/vega-tools.git

	Export the toolchain PATH in your terminal, or save it in your .bashrc file

$ export PATH=$PATH:/**<replace with your toolchain path>**/vega-tools/toolchain/bin/

7. Build the project:
Open a terminal in the directory containing the main.c, crt.s, linker.lds, and Makefile files. Then run the ‘make’ command to build the project:

$ make
riscv64-vega-elf-gcc -march=rv32im -mabi=ilp32 -Os -nostdlib -nostartfiles -T linker.lds -o hello.elf crt.S main.c
riscv64-vega-elf-objcopy hello.elf hello.bin -O binary

	Transfer the ‘hello.bin’ file to any of the Aries Development boards using xmodem file transfer, Press Enter after file transfer, You can see the output in terminal

+---+
| VEGA Series of Microprocessors Developed By C-DAC, INDIA |
| Microprocessor Development Programme, Funded by MeitY, Govt. of India |
+---+
| Bootloader, ver 1.0.0 [(hdg@cdac_tvm) Tue Dec 15 16:50:32 IST 2020 #135] |
| |
| ___ _________________________ ISA : RISC-V [RV32IM] |
__	/ /__ ____/_ ____/__		
__	/ /__ __/ _ / __ __ /		CPU : VEGA ET1031
__	/ / _ /___ / /_/ / _ ___		
_____/ /_____/ ____/ /_/	_	SoC : THEJAS32	
+---------------------------------------+-------------------------------------+			
www.vegaprocessors.in	vega@cdac.in		
+---------------------------------------+-------------------------------------+

Transfer mode : UART XMODEM

IRAM : [0x200000 - 0x23E7FF] [250 KB]

Please send file using XMODEM and then press ENTER key.
CCCCCCCCC
Starting program ...

Hello, World!

Note

	To clean the project you can type ‘make clean’ command

$ make clean
rm -f hello.elf hello.bin

	Board may need to reset before you try to transfer a new program. You can see the ‘CCC’ is displayed on the terminal for the xmodem handshake.

Development Tools

To develop software for an THEJAS32 SoC, you can use a range of development tools, including:

Assembler: Converts assembly code into machine code.

Compiler: Translates high-level programming languages into assembly or machine code.

Linker: Combines object files and libraries to create an executable program.

VEGA SDK: Enable developers to assist in creating applications for THEJAS32 platform. SDKs are designed to simplify and streamline the development process by offering pre-built components, APIs (Application Programming Interfaces), and examples that enable developers to interact with and utilize the features of the THEJAS32 platform.

Arduino IDE: is a widely-used platform for prototyping and developing projects with microcontrollers, VEGA BSP is available for arduino.

Integrated Development Environments (IDEs): Provide a comprehensive set of tools for code editing, building, debugging, and project management, streamlining the development process.
Depending on your preferences and requirements, you can choose from various open-source and commercial development tools available for the RISC-V ecosystem.

Conclusion

This Programmer’s Manual provides an overview of the RISC-V THEJAS32 SoC, covering the architecture overview, instruction set, memory organization, registers, exceptions, interrupts, programming model and development tools.

By understanding these key aspects of RV32IM-based SoC programming, you’ll be equipped to develop software applications for embedded systems using the RISC-V RV32IM architecture.

Remember to refer to the official RISC-V specification, the documentation provided by the specific THEJAS32 SoC implementation, and the available development tools’ documentation for detailed and up-to-date information when working on a particular project.

Index

 nav.xhtml

 Table of Contents

 		
 THEJAS32 Programmers Manual

 		
 THEJAS32 SoC Programmer’s Manual

 		
 Introduction

 		
 Architecture Overview

 		
 Features

 		
 Instruction Set Architecture

 		
 Memory Organization

 		
 Memory Map

 		
 Registers

 		
 System Control and Status Registers (CSRs)

 		
 Exceptions and Interrupts

 		
 Programming Model

 		
 Hello World Program

 		
 Development Tools

 		
 Conclusion

_static/plus.png

_static/boot.png
Power ON

Check boot option

BOOT-1

Download
program

BOOT-2

UART 0 wais for
xmoden transfer

Transferred
program stored to
SR

BOOT-3

UART 0 waits for
xmodem transfer

Transferred
program stored to
SDRAM

Run the stored

aits for

Stores the data to

RAM and

acknowledge the
packet

Last frame

Valid

opy the flash

image to

program

SDRAM

Invalid
I boot option

_static/magic.png
00000000
00000010
00000020
00000030
00000040

TF
00
00
00
00

4D
00
00
00
00

44
00
00
00
00

50
00
00
00
00

43
00
00
00
00

44
00
00
00
00

41
00
00
00
00

43
00
00
00
00

00
00
00
00
00

00
00
00
00
00

00
00
00
00
00

00
00
00
00
00

00
00
00
00
00

00
00
00
00
00

00
00
00
00
00

00
00
00
00
00

_static/minus.png

_static/file.png

_static/flash-layout.png
inux image

QSPI FLASH

Magic Number gy
Load address ey

Length eoe

Magic Number oy

Load address gy

Length eoe

_static/cdac1.png
CONC

_static/logo.png

